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ABSTRACT 

A new mechanism is proposed to explain the discrepancies between the 

measured and the expected polarization of the electron-atom impact radiation 

at threshold energy. The idea is the following: At threshold scattering, the 

spin of the scattered electron interacts magnetically with the orbital motion of 

the atomic electrons. The component of this magnetic interaction along the 

quantization axis, which is perpendicular to the incident electron direction, will 

split the magnetic sublevels of the atomic excited stated. This splitting will 

cause the coherent interference of the radiation, which originates from two de- 

generate upper levels and ends on a single lower level, to become ineffective. 

The polarization of the radiation is thereby affected and in fact decreases. The 

expected polarization P is modified by a depolarization factor f = (1 + w 2  r2), 

where w is the frequency splitting of the excited state and 7 is the life time of 

the transition from the excited upper state to a lower state. By using simple 

product wave function for the exceited state, the w and hence the P for various 

singlet-singlet transitions and triplet-triplet transitions have been calculated for 

helium atom. In general when the principal quantum number n of the excited 

state, where the radiation originates, increases, f increases and approaches 

unity. Consequently P increases and approaches the expected value. For ex- 

ample, P for 3 'P * 2 'S (5016A) line turns out to be 1.2% whereas for 4 'D - 2 'P 

(4922A) line to be 50%, and the expected values are 100% and 60% respectively. 
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1. INTRODUCTION 

c 

There has been increasing interest in the study of the polarization of light 

resulting from the excitation of the atom by the electron impact at threshold 

energy. This interest is specially centered on explaining the discrepancy be- 

tween the theory '* * and the experimental 3-6 results. When a helium atom at 

ground 1 ' S  state is excited to n'P state by electron impact at threshold energy, 

the outgoing electron having lost its linear momentum and hence its angular 

momentum can only be a S-wave. Due to conservation of the total angular mo- 

mentum along the incident electron direction (z '-axis),  only the magnetic sub- 

level m t  = 0 of the n 'P state can be excited (see Fig. 1). Here m t  is the com- 

ponent of the electronic angular momentum 8 along the z' -axis. The excited 

atom can then decay to the ground state by emitting -rr-radiation ( A m d =  0 transi- 

tion). The radiation is therefore 100% polarized along the z '  -axis. If the atom 

is excited into n lD state and then decays into lower n' IP state, the radiation will 

be 6U% polarized. 

zation will be further decreased. 

..- wnen tne aiom has I"irre a d  h y p ~ l I L 1 ~  6 i k i C t i . i i - G ,  the i;zla;-f 

Earlier experimental results 9 8 indicated that the threshold polarization 

was zero but rose to a maximum within a fraction of a volt. Recent measure- 

m e n t ~ ~ - ~  on helium with improved techniques showed that except for h = 4922A 

(4  'D + 2 'P) and h = 4388A (5 'D 4 2 lP ) lines, the observed polarization in the 
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immediate vicinity of threshold is still much too low to be comparable with the 

theoretical value. The most recent results of McFarland on line X = 4922A 

shows that the dipping of the polarization to a near threshold minimum of ap- 

proximately 30% (expected value is 60%) is a real effect. The general indication 

from the experimental observations is that when radiation originates from an 

upper state of high n (principal quantum number), e.g. 5 'D, the threshold polari- 

zation is comparable to the theoretical value; whereas for low n states, the 

polarization remains very low. 

6 

In the present work, a new theory is developed to explain the discrepancies 

between the expected polarizations based on the simple conservation of angular 

momentum and the experimental results. At threshold scattering, the scattered 

electron having lost its momentum remains virtually stationary and very close 

to the excited atom such that its spin can interact magnetically with the orbital 

motion of the atomic electrons. This interaction is rather similar to the spin- 

other-orbit interaction in an atomic system. The component of this magnetic 

interaction along the quantization axis (which is perpendicular to the incoming 

electron beam direction) will remove the degeneracy among the magnetic sub- 

levels of the excited state and cause level splittings. The splittings will then 

affect the interference part of the resonance radiation and hence the polarization 

of the radiation. In fact the polarization P,  for  the case without fine- and 

hyperfine-structure, will be shown (in Section 2) to be euqal to Po , which is the 

polarization from conservation of angular momentum, multiplied by a 
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depolarization factor f = (1 +z~~)-l. The 3 here is the square of the 

frequency separation between two interfering magnetic sublevels Y and Y & 2 

averaged over the spin orientations of the scattered electron, and r is the life 

time for the excited state to decay to the lower state considered here. For 

high n state of the excited helium, zis approximately proportional to [2n (2n -1) 

x (2n- 2)1-*. Since 7's  are  roughly of the same order of magnitude, the depolari- 

zation factor f - 1 where n becomes large, say n 1 5, and consequently P - Po, 

For states of lower n, e. g. n = 2 or 3, w 2  r 2  is considerably larger than 1 so 

that both f and P are  very small. The above conclusion seems to agree with the 

general experimental observations, 

- 

When the energy of the bombarding electron is slightly above the threshold, 

i.e., a fraction of electron volt, the selection rule Am4 = 0 still holds to a good 

approximation, and Po remains quite close to its threshold value. However the 

scattered electron may have gained enough linear momentum to get away from 

the atom and hence to make the spin-magnetic interaction and the frequency 

spiiaing insigr~~iiuarl~iy Dlilall. m'-'- ------'A --+----11-- - n . v n n  c) 4 - n  in p xxrhinh 
7 l l l ln  V V W U l U  l l C & U u & u * A A J  V U U U I  - ~ a - 1  --- 

will then decrease as Po decreases when the bombarding energy is increased 

further beyond its threshold value. This rise in P would only occur for cases 

where P is considerably smaller than Po at threshold energy. 

The depolarization factor considered above is similar to that derived by 

and later by Franken" in their treatment of the polarization of the Breit 

resonance fluorescence. There, the depolarization is due to a transverse 
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magnetic field which is perpendicular to the polarization vector of the incidenl 

light. This effect was first observed l1  at the crossing point of two excited 

fine-structure magnetic sublevels at certain magnetic field. This level cross 

ing technique has later been applied to determine the zero-field level struc- 

ture.12 The depolarization effect at the zero-field crossing is also called 

Hanle effect l 3 ,  which has been used to measure the excited state life 

t imes12 ,  1 4 - 1 7  

The depolarization effect of the electron impact radiation at the thresholc 

. 

energy treated here is also magnetic in nature, and it can be looked upon as  i 

due to an effective transverse magnetic field coming from the spin of the sca' 

tered electron. The general theory of this treatment will be developed in 

Section 2. The case with the fine- and the hyperfine-structure will be discus 

in Section 3. The numerical results on helium will be presented in the last 

Section. 

J 
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2. GENERAL THEORY 

, 

First we consider the simple case where the atom has no fine- and hyper- 

fine-structure both in the ground and in the excited state. The atom is initially 

at the ground state a, liso, and is being excited to state b, n by electron 

impact along the z f  -axis (shown in Fig. 1). The z f  -component of the total 

angular momentum of the initial system is therefore zero, i.e., M Z r =  0. At 

threshold collision, the outgoing electron having lost its linear momentum, 

hence has zero angular momentum, becomes a spherical wave centered at the 

atomic nucleus (origin of the system). Due to the conservation of MZ*, atom can 

be excited to the magnetic sublevel $4 (r’) only. The subscript 0 means 

r n t  = 0 ahd m4, is the z f  -component of the atomic angular momentum 4 . Now 

we transform the coordinate system (r‘)) into the system (r) by rotating (clock- 

wise) 7~/2 around the y f  -axis (see Fig. 2). The wave function +& o(r’)is then 

transformed linearly into a set of wave functions $8, (r) by the following: 

U 
V 

In this rotated (r ) system, the incident electron is along the x-axis. The sub- 

script v here is the projection of 4 along the new z-azis, and the magnetic sub- 

levels &, (r) with v # 0 as well as with v = 0 can be populated. Including a 
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time-dependent factor into (2.1), the time-dependent wave function of the excited 

state b is as follows: 

where E ,  is the energy of the sublevel v . rn& is the decaying constant of state 

- by  and which is the reciprocal of the life time ~~4 i.e., rflt = 1 / ~ , &  , The 

state 

which has decay constant rn14# and a set of magnetic sublevels p. The instan- 

taneous rate at which the radiation of polarization q is emitted during the 

transition process is 

is then decaying via electric dipole transition into a lower state 9 (n'lLi, ) 

where the proportional constant A absorbs all the factors which are independent 

of the summation indices. Using the expression, 

for the electric dipole transition matrix, (2.3) now reads, 
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Where 

The indices n , 4, v ,7 refer to the upper state 

state c. Since the decay constant r‘,,usually is large enough (lo7 - 1O1O sec-l) ,  

that an atom is excited to state 

and n’ , 4” , /I refer to the lower 

and then decays to lower state 2 by emitting a 

photon all in a time short compared with the time for this atom to be re-excited. 

We can then integrate the Eq. (2.5) over the time to obtain the rate R ( q ) ,  

where 

is the life time of transition from state ,b to state 9. R ( q )  will be nonvanishing 

only when 

v = T , i 7 ’ f 2  

7 



Since 

xu, xi, = y,, y i p  when v = V 

and 

xu, xF, * -  - - y v ,  y6, when v = T k 2 

we can express R(x ) andR (y )  as  follows: 

and 

where 

R (x) = R, t R, , 

R (y) = R, - R, 

(2.9a) 

(2.9b) 

(2.10a) 

(2.10b) 

(2.11) 

and 

, (2.12a) R, = 2 A T  c x Yg V (7T/2, 0 )  Yiv (7T/2, 0) xv,x;, (1 +T26&)-' . 
/.L v > P  

The Zeeman level splitting *uV, = Ev - Ev-2  is independent of the subscripts v 

and 5 ,  wv5 can therefore be replaced by w and (2.12a) becomes 

(2.12b) 
R, = 2 A r  (1  tT2Wz)'l 

The polarization, P , of the emitted radiation (observed along z-axis) is as 

follows : 
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Where 

(2.13) 

(2.14) 

is the expected polarization by considering the conservation of angular momen- 

tum only, and 

f = (1 + 7 2  w y  (2.15) 

is the depolarization factor. When the state is degenerate, i.e., w = 0, P is 

equal to its maximum valueP,. It decreases through the factor f when the 

Zeeman splitting (with respect to the new z-axis), w ,  becomes nonzero. If 

7 w 2  >> 1 ,  then P -. 0, the emitted radiation is unpolarized. The above electric 

dipole matrix element xvu need not be evaluated. Since * 

(2.16) 
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The reduced matrix element (4 1 1  r 1 1  8' ) will be cancelled in (2.14) and only 

Clebsch-Gordon coefficients (4' 14; p ,  k 1, v )  will remain in the expression for 

Po and P. 

R ,  as shown in ( 2 . 1 0 ~ ) ~  arising from two upper Zeeman levels v and 7 de- 

caying into a single lower level p , represents the interference part of the radix- 

tion, and which appears to be most effective when v and i7 are degenerate (inter- 

fering coherently). But in the case of degeneracy, this interference cannot be 

regarded as true interference. The magnetic sublevels +4 

always be combined linearly and transformed back into a single level +$ 

rotating the coordinate system (r ) back to (r'). Naturally, no interference can 

arise when only a single upper level is populated. However, when fine- and 

hyperfine-structure exist (and when their magnetic sublevels are  degenerate), 

the interference effect is a real effect. Because all the magnetic sublevels of 

(r'), as well as  that of the hyperfine-structure, +f the fine-structure, +j ,mj 

can be populated (will be shown in the next section)in the initial (r') system. 

( r )  in this case can 

(r') by 

. y  

. o  

(r') 
e m f  

Let us  concentrate our problem again in this rotated ( r )  system, which is 

free from the external transverse magnetic field (which is parallel to the z-axis 

and perpendicular to the incident electron beam to cause Zeeman splitting. A 

field which is parallel to the electron beam direction (x-axis) will obviously 

have no effect on the polarization P, because it does not remove the degeneracy 

among the magnetic sublevels v (which are  quantized with respect to the z-axis). 

The energy separation AE,, =Sou, here is considered to arise out of the magnetic 

. 
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. .  

interaction between the spin of the scattered electron and the orbital motion of 

the atomic electron. At threshold scattering, the outgoing electron having lost its 

momentum becomes a stationary spherical wave about the origin which is also 

the center of the atom. The excited atom is consisted of a shielded nuclear core 

and an outer electron at the atomic shell (n8). The scattered electron is electron 

1 with coordinate rI and spin sl. The excited atomic electron is electron 2 with 

coordinate r 2 ,  and its linear and angular momenta are  p2 and t 2  (=.e) respectively. 

The vector potential A at electron 2 due to the spin magnetic moment, p, , of 

the electron 1 is,  

A = (vs x r l z ) / r i 2  (2.18) 

where rI2  = rl - r The interaction Hamiltonian of p, under potential A is, 
2' 

H = ( e / m c )  A - pz = ( e / m c )  (v, ' r12 x p2)/rf2 (2.19) 

where e and m are  the electron charge and the electron mass respectively, and 

c is the velocity of light. Since 

(2.20) 

where p0 = e I i / 2 m c  is the Bohr magneton, we express (2.19) in atomic units 

as follows: 
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X = a2 (sl * rI2 x ' p 2 ) / r i 2  (2.21) 

The fine structure constant a = e2/lic is a dimensionless quantity. Equation 

(2.21) resembels the spin-other-orbit interaction between two electrons. The 

difference is that the interaction between s2  and p1  is not present here. Now 

we take the expectation value of M over the product wave function of electron 1 

and electron 2 where s l z  and J2= are  quantized with eigenvalues CT and v re- 

spectively. 

u ( r  ) and CP (r2 ) are the electronic wave function of electron 1 and 2. u ( r l  ) is a 

radial wave function only because the scattered electron is a S wave (at threshold 

scattering). 

Using the relation p = -iV, we express the operator in (2.22) as follows: 

where 

12 

(2.24) 



a re  the spherical components of a gradient operator Yl,+l (r12 )/r;2 

irregular solid spherical harmonics of the first order and it can be expanded as 

is the 

2 0 . 2 1  follows : 

For r 2  > r l ,  

(2.25a) 

and for r l  > r 2  

Now we use (2.25) to expand the operator in (2.23), which is then multiplied by 

1 u (rl) 1 
is angular independent, only the 4 = 1 term in the expansion (2.25a) for case 

r1 < r 2  will contribute to the ingegral. We therefore have, 

and integrated over the volume element d r l  of electron 1. Since u( r l  ) 

drl  - ( 5 2 "  p2)z  

r2 (2.26) 2 r3 
1 2  

Where 

(2.27) 

13 



Using (2.26), the two electron integral, 

. I  

(2.28) 

= ( 4  (r2) I f ( r 2 )  ( U r ; )  & 2 z  I 4(r2)) = vQ9 

becomes anone-electron integral. Where v is the eigenvalue of 4 2 2 ,  and 

The expectation value over M now becomes, I 

(2.29) 

(w) = ~ ~ D U Q  (2.30) 

The frequency separation (in atomic units) between sublevels v and v o  (= u - 2 )  is, 

= 2a2 a Q  (2.31) w = q,,_, 

Since w is the eigenvalue of s12 ,  it can take the value of +1/2 o r  -1/2 depending 

on the orientation of s1 with respect to the z-axis. However a2 (= 1/4) is the 

same for both cases, which then stands for the average values, c2, over the 

orientations. U s i n g 7  = 1/4, we have 

- 

- 
w2 7 2  = a 4  ~2 7 2  

14 

~ 

(2.32) 



and 

(2.33) 

Now the remaining job is to evaluate Q which is defined in (2.29). Q can be 

readily integrated when 

(2.27) 

2 is known . Here 1 u (r l  ) I , the density of the scattered electrion 1, is fortunately 

needed only in the region 0 5 r l  5 r 2 .  In this region, u ( r l )  is a S wave outside 

a shielded nuclear core of +1 charge, and to a good approximation it can be 

written as,  

where 1/dn is the normalization constant. Substituting (2.34) into (2.27) we 

have 

- 2 r 2  
f ( r2 )  = e  ( 2 r i  t 2 r 2  t 1) - 1 

The above equation of course would not be valid in region r > r2  . 

(2.35) 
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3. EFFECT OF FINE- AND HYPERFINE-STRUCTURE 

Following the discussion in the last section, the atom which is initially in 

the ground state a with zero orbital angular momentum (S state) can only be 

excited to rnd = 0 sublevel of the excited state b (which has principal quantum 

number and orbital angular momentum 4) by election impact along the quan- 

tization z-axis at threshold energy. Now the state b has total electronic spin 

s , hence there exists fine structure interaction. The good quantum numbers in 

this case are j and m j ,  where j (= 4 + s ) is the total electronic angular momen- 

tum and mj is the projection of j along the z'-axis. In ( j ,  m j  ) representation, 

state is as follows: 

Where the Clebsch-Gordan coefficient ( 8 s  j ; Oms mj ) is the weighing factor for 

each fine structure sublevel $j 

and the relation 6 

system (r')r/2 around the y'-axis into the new system ( r ) ,  and4 

transformed into a linear combination of 4 

jection of j along the new z-axis. Equation (3.1) now becomes 

, ms is the projection of s along the z'-axis, 

is implied. We again rotate (clockwise) the coordinate 
m S  , m j  

(r') is 
j m j  

(r ). The subscript v is the pro- 

16 



where 2 2  

. .  

. .  

The time-dependent wave function of state b is 

(3.3) 

and the rate of transition from state b_ to a lower state (which has principal 

quantum number 2, orbital angular momentum 4' and fine structure sublevels 

4 t p )  by emitting radiation of polarization q is (c.f. Eq. (2.6)), 

where 

and 

w ( j v ; T V ) =  (E.  -El , ) /h  
l' J U  

(3.7) 
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The life time 7 of transition between states 8 and 8' (which is defined in (2.7)) 

is independent of j and j ' . A is a proportional constant which is independent 

of all the summation indices. Here the quantum numbers 8, j , v , j ,V belong 

to the upper state b and 4' , j ' , p belong to the lower state c. We again split 

R (q ) into a linear combination of a interfering part R , and a non-interfering 

part R ,  such that, 

- 

R (x) = R, t R ,  and R (y) = R, - R , .  

R , and R , have the following expressions : 

where 

and 

R ,  = A r  R , ( j j ' )  

j j '  

R ,  = 2 A r  7 g *  ( j v )  g ( j 5 )  x ( j v ;  j ' p )  x* (77; j ' p )  

Since the fine structure separations a re  usually large enough that 

(3.9) 

(3.10) 

(3.11) 

(3.12) 
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. .  

we can neglect the terms of j # 7 in (3.11) and rewrite R, as  follows: 

R, R, ( j j ' )  (3.13) 

and 

R, ( j j ' )  = 2(1  t 7 2 w ; ) - 1  g *  ( j v ) g ( j V ) x ( j v ;  j 'p )x*( jV;  j'p)(3.14) 

where 

1 = (Ejv - E j v - 2 ) f i  

is independent of v. The polarization of the radiation is therefore, 

(3.15) 

(3.16) 

In the above expression for P ,  we have included the radiation arising from all 

the allowed transitions between the fine structure levels j of the upper state b 

and levels j ' of the lower state c. When each fine structure line, e.g. radiation 

due to a single upper level j to a single lower level j ' can be resolved, the 

polarizationP (j j ' ) of each line is expressed as  follows: 

R, ( j  1') 

R o ( j j ' )  
P ( j  j ' )  = = P o ( j  j ' )  f j  (3.17) 
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f .  1 = (1 t 7 2 w q > - 1 ,  

and 

(3.18) 

and R, ( j  j ' ) is defined in (3.10). 

When the nuclear spin of the atom is non-zero, i # 0, hyperfine structure 

interaction exists. The excited state b is then a linear combination of eigen- 

states &fmf (r'), where f ( = i +j  ) is the total angular momentum of the atom 

andm, is the projection of f along the z'-axis. After the coordinate system (r' ) 

has been rotated into the (r ) system by a rotation of 77/2 around the y'-axis, we 

have 

where 

1 

j f v  

(3.20) 

g ( J f v )  = y y ( j i f ; m s m i m f )  ( ~ s j ; O m s m s ) x D f  V m P  (0,7~/2,0) (3.21) 

v here now is the projection of the f along the new z-axis. The rate of radiation 

R ( q )  is again split into a linear combination of R, andR,, such that, 

20 



- R l  R (x) = R, + R, and R (y) = R, (3.22) 

and 

polar izat ion P = R,/R, 

R, and R, are expressed as follows: 

(3.23) 

and 

R, = A T  c 2 g * ( j f v ) g ( j T F ) x ( j f v ;  j " f ' ,u )x*( jTF;  j ' f 'p )  

j j '  f ,u f v > f ;  (3.25) 

where 

and 

(3.26) 

(3.27) 

In the above equations, the quantum numbers j , f , F, v , V belong to the upper 

state b and the quantum numbers j I : ,  f ", ,LL belong to the lower state E. The life 
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time 7 is the same as defined in (2.7). In writing down the expression for R, in 

(3.25), we have assumed that the frequency splitting between the fine structure 

level j and the level 7 # j is large so that the terms of j # 7 have been neglected. 

If the hyperfine splitting i d  also large that 

(3.28) 

then 

where 

(3.30) 
mjf  = ( E j f v  - E j f u - 2 ) f i *  

Similar to the dipole matrix element xVp in the last section (equation 2.17), 

the matrix element x ( j  v ;  j 'p) and x ( j f v; j ' f " p )  can also be expressed in terms 

of reduced matrix element (4 1 1  r ( 1  4 ' )  as fol10ws:'~ 

(3.31) 
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and 

Where W ( a  b c d ; e f ) is the Racah coefficient 23, 4 and 8' are  the orbital angu- 

la r  momentum of the excited upper state b and the lower state c respectively. 

The reduced matrix element will be cancelled in the ratio in evaluating the 

polarization P,  and only Racah and Clebsch-Gordan coefficients will remain. 
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4. NUMERICAL VALUES FOR He ATOM 

A helium atom at the ground l lS,  state can be excited either into a singlet 

excited state n1L8 or  a triplet excited state n 3L j .  In the case of a singlet state, 

we need to calculate the frequency splitting 

Q which is defined in (2.29) has the following expression: 

= 2 a2 CT Q of Eq. (2.31). The integral 

where f (r2)  is shown in (2.35), and +,.e (r2 ) is the wave function for the outer 

excited electron 2 of the helium. The inner (unexcited) electron, which remains 

at the 1 s orbital, does not contribute to the frequency splitting w . We use the 

following approximate wave function for +,.e (r2 ): 

The 5 values are chosen by Slater's rules?4 We will calculate the polarization 

of the following transitions : 

2'P - l 'S,  31P' 2% 3lD - 2lP 

4 l D -  2lP and SID-  2lP 

24 



The chosen 5 values for the corresponding upper state of the above transitions 

are,  for He, 

C(2p) = 0.575, L(3p) = 0.333, 5(3d) = 0.333, 5(4d) = 0.270 and 5(5d) = 0.250.  

(4.4) 

Using the wave function in (4.2) and the expression in (2.35) for f ( r 2 ) ,  integral 

Q in (4.1) is integrated into the following: 

(4 5) 

1 - 2(2n-1)(2n-2) - 2(2n-2) - 
(2 5 +2)2" (2Ct2)2"-1 ( 2 5 t 2 p - 2  

Q r -  (2 5)2"+1 

2x1 (2n-1) (2n-2) 

The values of Q for all the above mentioned excited states are calculated and 

listed in Table I. The depolarization factor f 

as  well as  the polarization P from (2.33), 

p = Po f = P,(1 t a4 Q 2  (4.7) 

a r e  thus obtained and listed in Table I. Po, which is the threshold polarization 

by conservation of angular momentum is calculated by (2.14) and is also listed 

in Table I. The lifetime 7 used here are  those calculated by Goldberg2'. 

When the principal quantum number n becomes large, say n 2 3, the last 

three terms in the curly bracket of (4.5) become negligibly small comparing to 

the first term. If we neglect these three terms Q becomes, 
25 



Q 2 - (25)3/[2n (2n - 1) (2n - 2)1 when n L 3 (4.8) 

The above approximate expression for Q indicates that I Q I decreases as n increases. 

Since the life time T of the excited singlet states a re  of the same order of magnitude, 

the depolarization factor f increases as n increases (see Table I). When n 2 5, 

f -+ 1 and hence P + Po. In fact this general conclusion on the n -dependence of 

the polarization agrees very well with the experimental observations. 3 *  Our 

calculation on individual transitions is by no means exact considering the ap- 

proximations included, and it will be improved when better wave functions a re  

used. Nevertheless this new mechanism with a simple minded calculation does 

seem to explain satisfactorily the discrepancies between the expected threshold 

polarizations, namely Po's here, and the observed values. 

When helium atom is excited into a triplet state, n3L, and then decays into 

a lower triplet state, n' 3L' , by electric dipole transition, the total polarization 

of the radiation shown in (3.16) cannot be written in a form similar to that in 

(4.7) for singlet transitions. However, when fine structure lines a re  resolved, 

the polarization between a pair of fine structure levels j (of the upper state) 

and j ' (of the lower state) can be measured. This polarization, which is shown 

in (3.17), 

Po(j  j ' )  

1 + r 2 7  
P ( j ,  j ' )  = Po ( j  j ' ) f j  = 
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- 
is quite similar to the expression in (4.7). Here we need to know wq . Instead of 

evaluating the integral I as shown in (2.28) for the singlet states, now we evaluate 

the following integral I in the ( j  v) representation, 

. .  

where r2 and r3 are  the coordinates of the outer (excited) and the inner electrons 

respectively. Using Wigner-Eckart theorem,18 (4.10) is expressed as a product of 

a reduced matrix element in 4 representation and a coefficient which contains 

quantum numbers v , j , 4 and s , 

The orbital wave function +,.e ( r 2 ,  r3 ) of the excited helium atom is again 

approximated by a simple product wave function (r2 ) +ls (r3 ), and the 

reduced matrix element becomes, 

where 

is the same as that in (4.1) for singlet states. Following (2.22) the expectation 

value of X now is,  
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<%> = a2 5 I j  = u a2 D [ j ( j  t1) tx(d t 1) - s (s t 1)l Q/ [ 2  j ( j  t 1)l . (4.13) 

Where D is the projection of electron spin of the scattered electron along the 

z-axis, and which can take values +1/2 o r  -1/2. The frequency separation 

(in atomic units) between ( j  u) and ( j  , v - 2 )  becomes 

w .  = a2 5 Q G j  
1 

and 

(4.14) 

where 

Cj = [ j  ( j  t 1) t 4<4t 1) - s ( s  t 1)l/j (j t 1). 

Substituting (4.15) into (4.9) we have, 

P ( j  j') = P o  (j j ' )  f j  

and 

f. 1 = (1 t a4 Q2 C: 7 2 / 4 ) - l  
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(4.15) 

(4.16) 

(4.17) 

(4.19) 



When the fine structure lines are not resolved, the total polarization for n 3 L  - 
n' 3L' transition is (by (3.16)), 

(4.19) 

where 

(4.20) 

and R, ( j j ' ) and R, ( j  j ' ) are defined in  (3.14) and (3.10) respectively. The 

Po in this case will be 

(4.21) 

which has the same meaning as before, namely it is the threshold polarization 

when only the simple conservation law of angular momentum is considered. 

In Table I1 we have listed the  Q's , Po's and P's for transitions 33P - 23S  , 

43D - 23p. The p, ( j  j ' ) ,  P ( j  j ' )  and w j  for fine structure lines have also 

been listed. The depolarization factors f Is and consequently polarization 

P's here for triplet transitions a re  considerably smaller than those of singlet 

transitions. This is due to the fact that the life time of triplet transitions 

a r e  nearly two orders of magnitude longer than that of singlet transitions. 
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In addition, the fine structure effect would also decrease the Pols and 

hence the PIS. 

previously calculated. 

do not agree with all the previous values. 

transition was shown'*2 to be 36.6'%, whereas our value is 12%. 

is that we have included the interference effect in the present treatment 

while it has been neglected previously. For singlet transitions and for the case 

of complete degeneracy, this interference is not a true effect as has been dis- 

cussed in Section 2. SincePo corresponds to the value of P when magnetic sub- 

levels are degenerate, i.e., w = 0, it will be the same whether the interference 

effect has been included or  not in computing Po for the singlet transitions. The 

situations of course will be different for the triplet transitions, because the 

interference remains effective even when the sublevels are degenerate, i.e., 

cd. = 0. 

The Po t s  in Table I for singlet transitions agree with those 

However, the Po Is in Table I1 for triplet transitions 

For example the Po for 33P + 2 3S 

The reason 

1 
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